
avarice(1) avarice(1)

NAME
avarice − Provides an interface from avr-gdb to Atmel’s JTA GICE box.

SYNOPSIS
av arice [OPTIONS]... [[HOST_NAME]:PORT]

DESCRIPTION
AV aRICE runs on a POSIX machine and connects to gdb via a TCP socket and communicates via gdb’s
"serial debug protocol". This protocol allows gdb to send commands like "set/remove breakpoint" and
"read/write memory".

AV aRICE translates these commands into the Atmel protocol used to control the AVR JTAG ICE. Connec-
tion to the AVR JTAG ICE is via a serial port on the POSIX machine.

Because the GDB <---> AVaRICE connection is via a TCP socket, the two programs do not need to run on
the same machine. In an office environment, this allows a developer to debug a target in the lab from the
comfort of their cube (or even better, their home!)

NOTE: Even though you can runav arice and avr−gdb on different systems, it is not recommended
because of the security risk involved. av arice was not designed to be a secure server. There is no
authentication performed when a client connects toav arice when it is running in gdb server mode.

Supported Devices
av arice currently has support for the following devices:

at90can128
at90can32 (o)
at90can64 (o)
at90pwm2 (o) (+)
at90pwm216 (o) (+)
at90pwm2b (o) (+)
at90pwm3 (o) (+)
at90pwm316 (o) (+)
at90pwm3b (o) (+)
at90usb1287 (* )
at90usb162 (o) (+)
at90usb646 (* )
at90usb647 (* )
atmega128
atmega1280 (* )
atmega1281 (* )
atmega1284p (* )
atmega16
atmega162
atmega164p (o)
atmega165 (o)
atmega165p (o)
atmega168 (o) (+)
atmega168p (o) (+)
atmega169
atmega16hva (o)
atmega2560 (* )
atmega2561 (* )
atmega32
atmega323
atmega324p (o)
atmega325 (o)
atmega3250 (o)
atmega3250p (o)

September 29, 2008 1



avarice(1) avarice(1)

atmega325p (o)
atmega328p (o) (+)
atmega329 (o)
atmega3290 (o)
atmega3290p (o)
atmega329p (o)
atmega32c1 (o) (+)
atmega32hvb (o) (+)
atmega32m1 (o) (+)
atmega32u4 (o)
atmega406 (* )
atmega48 (o) (+)
atmega48p (o) (+)
atmega64
atmega640 (* )
atmega644 (* )
atmega644p (* )
atmega645 (* )
atmega6450 (* )
atmega649 (* )
atmega6490 (* )
atmega88 (o) (+)
atmega88p (o) (+)
attiny13 (o) (+)
attiny167 (o) (+)
attiny2313 (o) (+)
attiny24 (o) (+)
attiny25 (o) (+)
attiny261 (o) (+)
attiny43u (o) (+)
attiny44 (o) (+)
attiny45 (o) (+)
attiny461 (o) (+)
attiny48 (o) (+)
attiny84 (o) (+)
attiny85 (o) (+)
attiny861 (o) (+)
attiny88 (o) (+)
atxmega128a1 (* )

* − Only supported by the JTAG ICE mkII device.
o − Only supported by the JTAG ICE mkII and AVR Dragon device.
+ − debugWire, see below

Supported File Formats
av arice uses libbfd for reading input files. As such, it can handle any file format that libbfd knowns about.
This includes the Intel Hex, Motorola SRecord and ELF formats, among others. If you tellav arice to read
an ELF file, it will automatically handle programming all of the sections contained in the file (e.g. flash,
eeprom, etc.).

OPTIONS
−h, −−help

Print this message.

−1, −−mkI
Connect to JTAG ICE mkI (default).

September 29, 2008 2



avarice(1) avarice(1)

−2, −−mkII
Connect to JTAG ICE mkII.

−B, −−jtag-bitrate <rate>
Set the bitrate that the JTAG box communicates with the AVR target device. Thismust be less
than 1/4 of the frequency of the target. Valid values are 1 MHz, 500 kHz, 250 kHz or 125 kHz for
the JTAG ICE mkI, anything between 22 kHz through approximately 6400 kHz for the JTAG ICE
mkII. (default: 250 kHz)

−C, −−capture
Capture running program.
Note: debugging must have been enabled prior to starting the program. (e.g., by running avarice
earlier)

−c, −−daisy-chain<ub,ua,bb,ba>
Setup JTAG daisy-chain information.
Four comma-separated parameters need to be provided, corresponding tounits before, units after,
bits before, and bits after.

−D, −−detach
Detach once synced with JTAG ICE

−d, −−debug
Enable printing of debug information.

−e, −−erase
Erase target. Notpossible in debugWire mode.

−E, −−event <eventlist>
List of events that do not interrupt.JTAG ICE mkII and AVR Dragon only. Default is
"none,run,target_power_on,target_sleep,target_wakeup"

−f, −−file <filename>
Specify a file for use with the --program and --verify options. If --file is passed and neither --pro-
gram or --verify are given then --program is implied.

−g, −−dragon
Connect to an AVR Dragon. This option implies the-2 option.

−I , −−ignore-intr
Automatically step over interrupts.
Note: EXPERIMENTAL. Can not currently handle devices fused for compatibility.

−j , −−jtag <devname>
Port attached to JTAG box (default: /dev/avrjtag). If the JTAG_DEV environmental variable is set,
avarice will use that as the default instead.
If av arice has been configured with libusb support, the JTAG ICE mkII can be connected through
USB. In that case, the stringusb is used as the name of the device. If there are multiple JTAG
ICE mkII devices connected to the system through USB, this string may be followed by the (trail-
ing part of the) ICE’s serial number, delimited from theusb by a colon.
The AVR Dragon can only be connected through USB, so this option defaults to "usb" in that case.

−k, −−known-devices
Print a list of known devices.

−L , −−write-lockbits <ll>
Write lock bits. The lock byte data must be given in two digit hexidecimal format with zero pad-
ding if needed.

−l, −−read-lockbits
Read the lock bits from the target. The individual bits are also displayed with names.

September 29, 2008 3



avarice(1) avarice(1)

−P, −−part <name>
Target device name (e.g. atmega16)

−p, −−program
Program the target. Binary filename must be specified with --file option.
NOTE: The old behaviour of automatically erasing the target before programming is no longer
done. You must explicitly give the --erase option for the target to be erased.

−R, −−reset-srst
Apply nSRST signal (external reset) when connecting. This can override applications that set the
JTD bit.

−r , −−read-fuses
Read fuses bytes.

−V, −−version
Print version information.

−v, −−verify
Verify program in device against file specified with --file option.

−w, −−debugwire
Connect to JTAG ICE mkII (or AVR Dragon), talking debugWire protocol to the target. This
option implies the-2 option. Seethe DEBUGWIRE section below.

−W, −−write-fuses<eehhll>
Write fuses bytes.eeis the extended fuse byte,hh is the high fuse byte andll is the low fuse byte.
The fuse byte data must be given in two digit hexidecimal format with zero padding if needed. All
three bytes must currently be given.

−x, −−xmega
The target device is an ATxmega part. Sincethe ATxmega uses a different JTAG communication
than other AVRs, the normal device autodetection based on the JTAG ID does not work. If the
device has been explicitly selected through the −P option, it is not necessary to also specify the −x
option.
NOTE: Current, if the target device doesn’t hav ean extended fuse byte (e.g. the atmega16), the
you should set ee==ll when writing the fuse bytes.

HOST_NAME defaults to 0.0.0.0 (listen on any interface) if not given.

:PORT is required to put avarice into gdb server mode.

EXAMPLE USAGE
avarice --erase --program --file test.bin --jtag /dev/ttyS0 :4242

Program the filetest.bin into the JTAG ICE (mkI) connected to /dev/ttyS0 after erasing the device, then lis-
ten in GDB mode on the local port 4242.

avarice --jtag usb:1234 --mkII :4242

Connect to the JTAG ICE mkII attached to USB which serial number ends in1234, and listen in GDB
mode on local port 4242.

DEBUGGING WITH A VARICE
The JTAG ICE debugging environment has a few restrictions and changes:

• No "soft" breakpoints, and only three hardware breakpoints. The break command sets hardware break-
points. The easiest way to deal with this restriction is to enable and disable breakpoints as needed.

• Two 1-byte hardware watchpoints (but each hardware watchpoint takes away one hardware break-
point). If you set a watchpoint on a variable which takes more than one byte, execution will be
abysmally slow. Instead it is better to do the following:

watch *(char *)&myvariable

September 29, 2008 4



avarice(1) avarice(1)

which watches the least significant byte ofmyvariable.

• The Atmel AVR processors have a Harvard architecture (separate code and data buses). To distinguish
data address 0 from code address 0,avr-gdb adds 0x800000 to all data addresses. Bear this in mind
when examining printed pointers, or when passing absolute addresses to gdb commands.

DEBUGWIRE
ThedebugWire protocol is a proprietary protocol introduced by Atmel to allow debugging small AVR con-
trollers that don’t offer enough pins (and enough chip resources) to implement full JTAG. The communica-
tion takes place over the /RESET pin which needs to be turned into a debugWire connection pin by pro-
gramming theDWEN fuse (debugWire enable), using a normal programmer connection (in-system pro-
gramming, high-voltage programming).Note that by enabling this fuse, the standard reset functionality of
that pin will be lost, so any in-system programming will cease to work as it requires a functional/RESET
pin. Thusit should be madeabsolutely sure there is a way back, like a device (as the STK500, for exam-
ple) that can handle high-voltage programming of the AVR. Currently, av arice offers no option to turn off
the DWEN fuse.However, avrdude offers the option to turn it off either through high-voltage program-
ming, or by using the JTAG ICE mkII to first turn the target into an ISP-compatible mode, and then using
normal ISP commands to change the fuse settings.
Note that the debugWire environment is further limited, compared to JTAG. It does not offer hardware
breakpoints, so all breakpoints have to be implemented as software breakpoints by rewriting flash pages
usingBREAK instructions. (Software breakpoints are currently not implemented byav arice.) Somemem-
ory spaces (fuse and lock bits) are not accessible through the debugWire protocol.

SEE ALSO
gdb(1), avrdude(1), avr−gdb(1), insight(1), avr−insight(1), ice−gdb(1), ice−insight(1)

AUTHORS
Av arice (up to version 1.5) was originally written by Scott Finneran with help from Peter Jansen. They did
the work of figuring out the jtagice communication protocol before Atmel released the spec (appnote
AVR060).

David Gay made major improvements bringing avarice up to 2.0.

Joerg Wunsch reworked the code to abstract the JTAG ICE communication from the remainder, and then
extended the code to support the JTAG ICE mkII protocol (see Atmel appnote AVR067).

September 29, 2008 5


